Chapter 3:

Macro- and microevolutionary insights into the evolution of foraging behavior and life history traits

Dylan Padilla

Oral comprehensive exam

Evolutionary Biology PhD Program School of Life Sciences July 18, 2023

Dylan Padilla

Chapter 1: Macroclimatic and maternal effects on the evolution of reproductive traits in lizards

- Chapter 1: Macroclimatic and maternal effects on the evolution of reproductive traits in lizards
- Chapter 2: The correlated evolution of foraging mode and reproductive effort in lizards

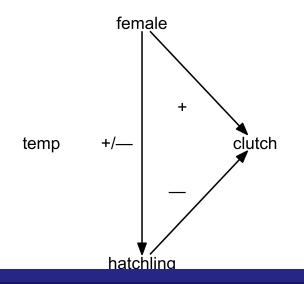
- Chapter 1: Macroclimatic and maternal effects on the evolution of reproductive traits in lizards
- Chapter 2: The correlated evolution of foraging mode and reproductive effort in lizards
- Chapter 3: Foraging efficiency of rover and sitter larvae of Drosophila melanogaster

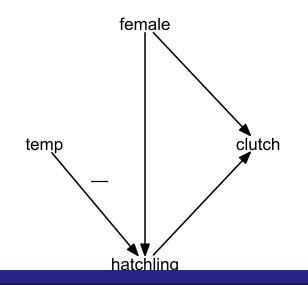
- Chapter 1: Macroclimatic and maternal effects on the evolution of reproductive traits in lizards
- Chapter 2: The correlated evolution of foraging mode and reproductive effort in lizards
- Chapter 3: Foraging efficiency of rover and sitter larvae of *Drosophila* melanogaster
- Chapter 4: Geographic variation of the *for* gene revealed signatures of local adaptation in *Drosophila melanogaster*

Chapter 1:

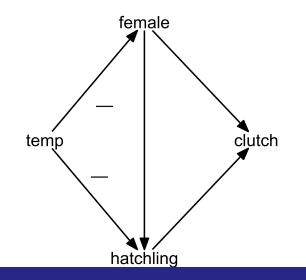
Dylan Padilla

What is life history theory?

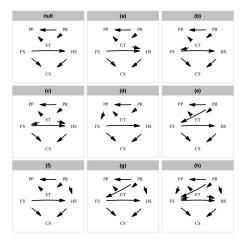


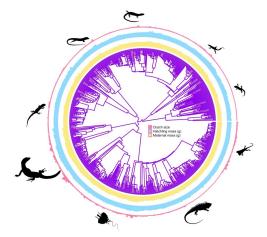

Dylan Padilla

Optimal reproductive tactics


Dylan Padilla

Optimal reproductive tactics

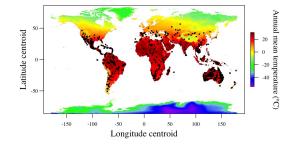

Dylan Padilla


Optimal reproductive tactics

Dylan Padilla

Relationships among environmental/body temperature and life-history traits

Dylan Padilla

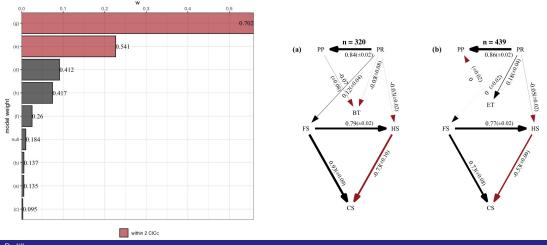


Dylan Padilla

Chapter 3:

WorldClim - Global Climate Data

Free climate data for ecological modeling and GIS



Phylogenetic path analysis, package phylopath in R

Dylan Padilla

Chapter 3: 00000

A model describing a direct and an indirect effect of precipitation on the evolution of reproductive traits was strongly supported

Dylan Padilla

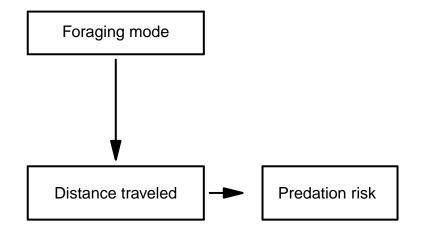
Chapter 2:

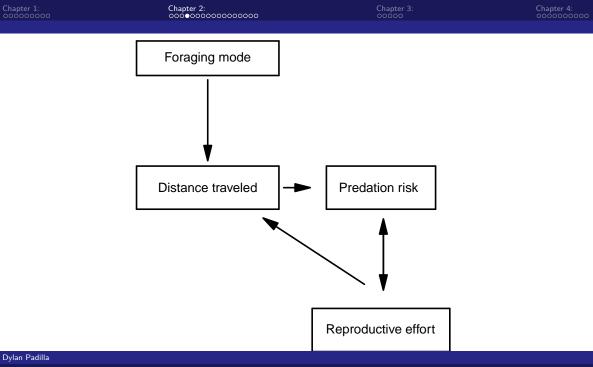
Dylan Padilla

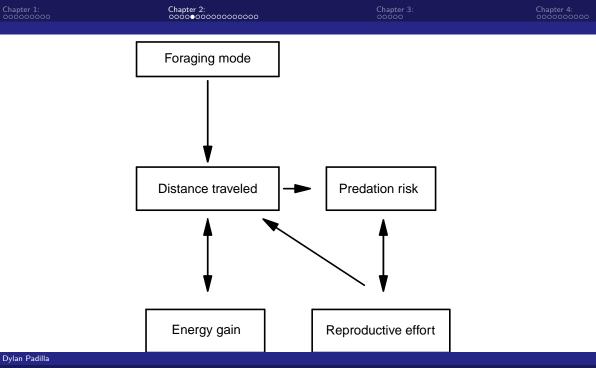
Chapter 2:

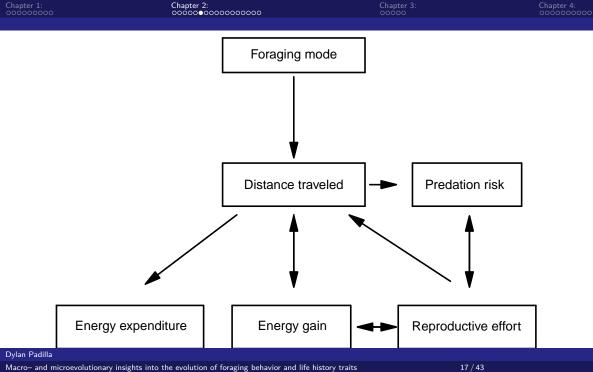
Chapter 3 00000

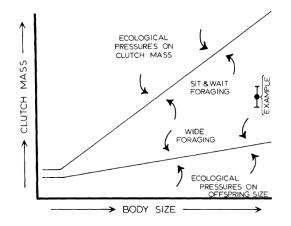
The foraging-mode paradigm








Dylan Padilla


Dylan Padilla

Functional reproductive volume

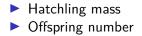
Dylan Padilla

Data source and description of variables

DOI: 10.1111/geb.12773	
DOI: 10.1111/geb.12773	updates
Received: 21 June 2017 Revised: 13 May 2018 Accepted: 22 May 2018	Check fo

Traits of lizards of the world: Variation around a successful evolutionary design

Shai Meiri^{1,2}

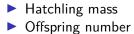

Dylan Padilla

Data source and description of variables

DOI: 10.1111/geb.12773	
DOI: 10.1111/geb.12773	updates
Received: 21 June 2017 Revised: 13 May 2018 Accepted: 22 May 2018	Check fo

Traits of lizards of the world: Variation around a successful evolutionary design

Shai Meiri^{1,2}


Dylan Padilla

Data source and description of variables

DOI: 10.1111/geb.12775	
DOI: 10.1111/geb.12773	update
Received: 21 June 2017 Revised: 13 May 2018 Accepted: 22 May 2018	Check f

Traits of lizards of the world: Variation around a successful evolutionary design

Shai Meiri^{1,2}

Female mass

Dylan Padilla

Data source and description of variables

DOI: 10.1111/geb.12/73	
DOI: 10.1111/geb.12773	updates
Received: 21 June 2017 Revised: 13 May 2018 Accepted: 22 May 2018	Check for

Traits of lizards of the world: Variation around a successful evolutionary design

Shai Meiri^{1,2}

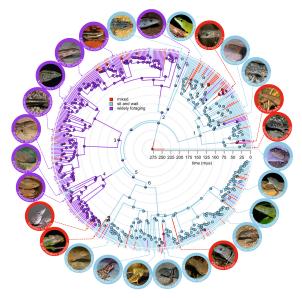
- Hatchling mass
- Offspring number
- Female mass
- Scaled-mass index

Dylan Padilla

Ancestral reconstruction of foraging mode

▶ We used a set of continuous-time, discrete-state Markov chain models

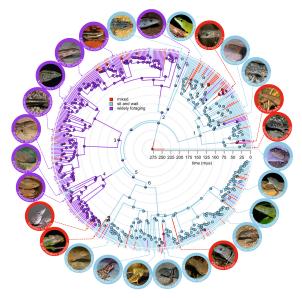
Dylan Padilla


Ancestral reconstruction of foraging mode

- ▶ We used a set of continuous-time, discrete-state Markov chain models
- We fitted three different models to our data, using the function make.simmap from the phytools package of R v.1.0.1

Effects of maternal mass and foraging mode on reproductive output

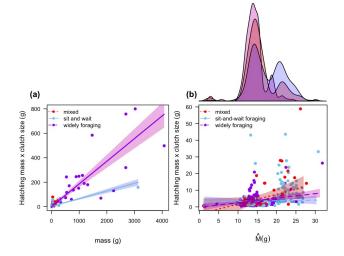
We used PGLS to model the relationship among maternal mass, foraging mode and reproductive output through the gls function from the nlme package of R v.3.1.153


Chapter 3: 00000

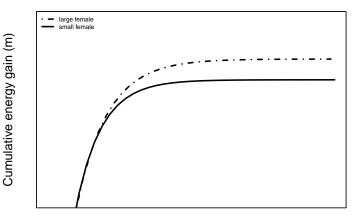
1. Sit-and-wait foraging is the most likely ancestral state

Dylan Padilla

Chapter 3: 00000

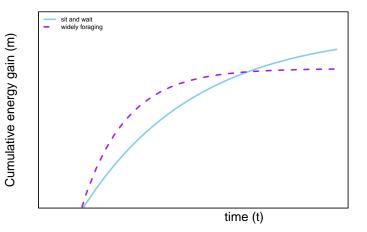


- 1. Sit-and-wait foraging is the most likely ancestral state
- 2. Foraging mode is conserved among lizards

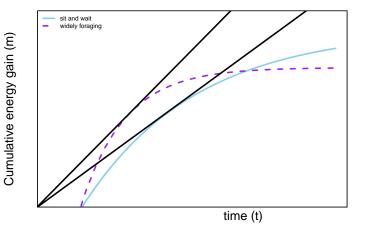

Dylan Padilla

Chapter 3:

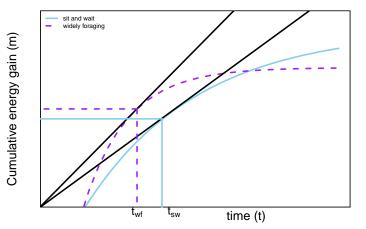
The evolution of reproductive effort in lizards was driven by an interaction between maternal mass and foraging mode

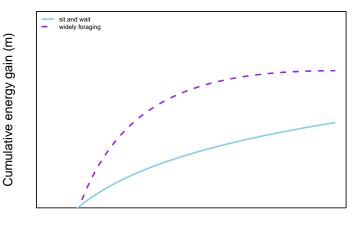


Dylan Padilla



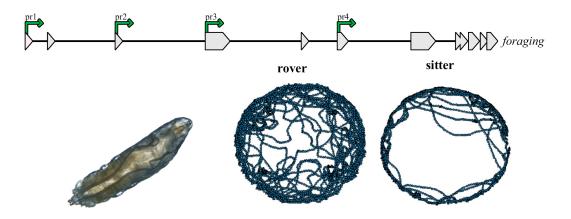
time (t)


Dylan Padilla


Dylan Padilla

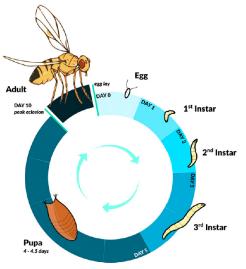
Dylan Padilla

Dylan Padilla



time (t)

Dylan Padilla


Dylan Padilla

Drosophila melanogaster foraging behavior

Dylan Padilla

Experimental design

Dylan Padilla

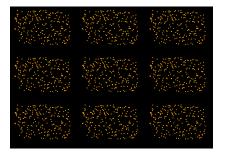


Figure 1: Schematic represention of an arena with a multi-patch distribution of resources.

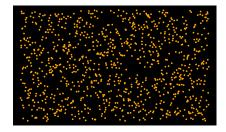
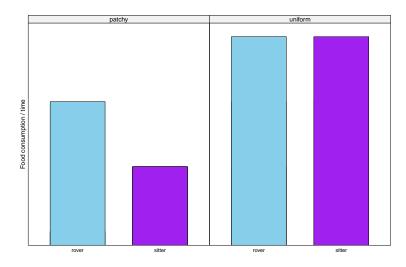
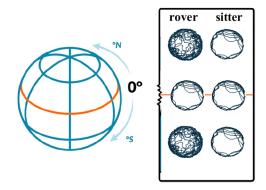



Figure 2: Schematic representation of an arena with a hypothetical uniform distribution of resources.

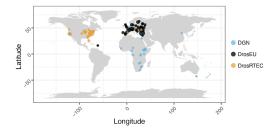
Chapter 3: 0000●

Predictions

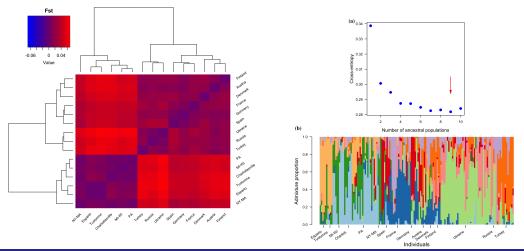

Dylan Padilla

Chapter 4:

Dylan Padilla

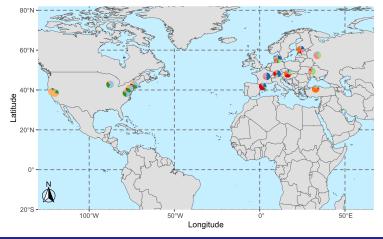

The Drosophila *foraging* gene provides an opportunity to understand the mechanisms underlying evolutionary responses to environmental variation

 Given its allelic variants, one should expect geographic variation of the for gene among populations

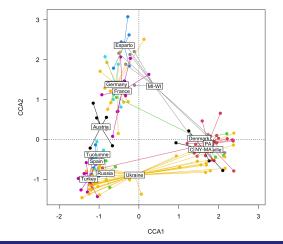


The Drosophila *foraging* gene provides an opportunity to understand the mechanisms underlying evolutionary responses to environmental variation

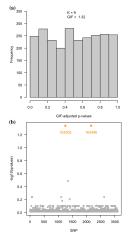
2. The DEST dataset enables one to study genetic variation accross populations spanning America and Europe

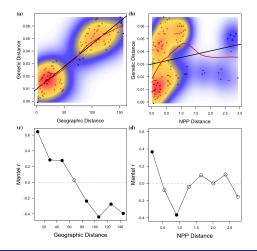


A genetic differentiation test, and an analysis of population structure revealed an east-west gradient in allele frequency


Dylan Padilla

Stronger structure in populations collected in America than those collected in Europe, although the structure of pools from Ukraine, Turkey, and Russia stands out


Dylan Padilla


Spatially varying selection driven by the seasonality of net primary production

Dylan Padilla

Models of isolation by environment and isolation by distance are likely driving genetic differentiation among populations

Dylan Padilla

Macroclimatic and maternal effects on the evolution of reproductive traits in lizards

Dylan J. Padilla Perez 💿 | Michael J. Angilletta Jr.

PROCEEDINGS B


royalsocietypublishing.org/journal/rspb

The correlated evolution of foraging mode and reproductive effort in lizards

Dylan J. Padilla Perez, Dale F. DeNardo and Michael J. Angilletta Jr

School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA

Dvlan Padilla

Geographic variation of the *for* gene reveals signatures of local adaptation in *Drosophila melanogaster*

Journal:	Journal of Evolutionary Biology
Manuscript ID	JEB-2023-00177
Manuscript Type:	Research Article
Keywords:	foraging mode, landscape genetics, polymorphism, heterogeneous environments, path length

Dylan Padilla

Time for discussion!

Dylan Padilla